Wednesday, November 21, 2012

Questions on EEG

  1. What is electricity?
  2. How do we measure it? 
  3. What do we measure when we put an electrode on the scalp?
  4. Obviously there is no movement of electrons across the electrodes, so it must be measuring some sort of a field. What is meant by electric field, how is it different from electromagnetic field and electrostatic field?
From www.physicsclassroom.com

Structure of matter

Not only do electrostatic occurrences permeate the events of everyday life, without the forces associated with static electricity, life as we know it would be impossible. Electrostatic forces - both attractive and repulsive in nature - hold the world of atoms and molecules together in perfect balance. Without this electric force, material things would not exist. Atoms as the building blocks of matter depend upon these forces. And material objects, including us Earthlings, are made of atoms and the acts of standing and walking, touching and feeling, smelling and tasting, and even thinking is the result of electrical phenomenon. Electrostatic forces are foundational to our existence.

Boyle's studies (middle to late 1600s) of gaseous substances promoted the idea that there were different types of atoms known as elements. Dalton (early 1800s) conducted a variety of experiments to show that different elements can combine in fixed ratios of masses to form compounds. Dalton subsequently proposed one of the first theories of atomic behavior that was supported by actual experimental evidence.

English scientist J.J. Thomson's cathode ray experiments (end of the 19th century) led to the discovery of the negatively charged electron and the first ideas of the structure of these indivisible atoms. Thomson proposed the Plum Pudding Model, suggesting that an atom's structure resembles the favorite English dessert - plum pudding. The raisins dispersed amidst the plum pudding are analogous to negatively charged electrons immersed in a sea of positive charge.

Nearly a decade after Thomson, Ernest Rutherford's famous gold foil experiments led to the nuclear model of atomic structure. Rutherford's model suggested that the atom consisted of a densely packed core of positive charge known as the nucleus surrounded by negatively charged electrons. While the nucleus was unique to the Rutherford atom, even more surprising was the proposal that an atom consisted mostly of empty space. Most the mass was packed into the nucleus that was abnormally small compared to the actual size of the atom.

Neils Bohr improved upon Rutherford's nuclear model (1913) by explaining that the electrons were present in orbits outside the nucleus. The electrons were confined to specific orbits of fixed radius, each characterized by their own discrete levels of energy. While electrons could be forced from one orbit to another orbit, it could never occupy the space between orbits.

Bohr's view of quantized energy levels was the precursor to modern quantum mechanical views of the atoms. The mathematical nature of quantum mechanics prohibits a discussion of its details and restricts us to a brief conceptual description of its features. Quantum mechanics suggests that an atom is composed of a variety of subatomic particles. The three main subatomic particles are the proton, electron and neutron. The proton and neutron are the most massive of the three subatomic particles; they are located in the nucleus of the atom, forming the dense core of the atom. The proton is charged positively. The neutron does not possess a charge and is said to be neutral. The protons and neutrons are bound tightly together within the nucleus of the atom. Outside the nucleus are concentric spherical regions of space known as electron shells. The shells are the home of the negatively charged electrons. Each shell is characterized by a distinct energy level. Outer shells have higher energy levels and are characterized as being lower in stability. Electrons in higher energy shells can move down to lower energy shells; this movement is accompanied by the release of energySimilarly, electrons in lower energy shells can be induced to move to the higher energy outer shells by the addition of energy to the atom. If provided sufficient energy, an electron can be removed from an atom and be freed from its attraction to the nucleus.

Summary:

  • All material objects are composed of atoms. There are different kinds of atoms known as elements; these elements can combine to form compounds. Different compounds have distinctly different properties. Material objects are composed of atoms and molecules of these elements and compounds, thus providing different materials with different electrical properties.
  • An atom consists of a nucleus and a vast region of space outside the nucleus. Electrons are present in the region of space outside the nucleus. They are negatively charged and weakly bound to the atom. Electrons are often removed from and added to an atom by normal everyday occurrences. These occurrences are the focus of this Static Electricity unit.
  • The nucleus of the atom contains positively charged protons and neutral neutrons. These protons and neutrons are not removable or perturbable by usual everyday methods. It would require some form of high-energy nuclear occurrence to disturb the nucleus and subsequently dislodge its positively charged protons. These high-energy occurrences are fortunately not an everyday event. One sure truth of this unit is that the protons and neutrons will remain within the nucleus of the atom. Electrostatic phenomenon can never be explained by the movement of protons.
Concepts in Static Electricity

Rubbing two objects against each other brings the electron fields of the atoms in each close to each other. Electron affinity varies amongst molecules. If there is a significant difference in this property between the two objects being rubbed against each other, then electrons will be transferred. This will result in a charge on the surface of both objects. The charge will obviously be of opposite polarity. It will also be equal in magnitude. This is known as the "Law of conservation of charge". A triboelectric series is the order in which objects are arranged according to the degree of electron affinity.

No comments:

Post a Comment